Toward more accurate pan-specific MHC-peptide binding prediction: a review of current methods and tools
نویسندگان
چکیده
Binding of short antigenic peptides to major histocompatibility complex (MHC) molecules is a core step in adaptive immune response. Precise identification of MHC-restricted peptides is of great significance for understanding the mechanism of immune response and promoting the discovery of immunogenic epitopes. However, due to the extremely high MHC polymorphism and huge cost of biochemical experiments, there is no experimentally measured binding data for most MHC molecules. To address the problem of predicting peptides binding to these MHC molecules, recently computational approaches, called pan-specific methods, have received keen interest. Pan-specific methods make use of experimentally obtained binding data of multiple alleles, by which binding peptides (binders) of not only these alleles but also those alleles with no known binders can be predicted. To investigate the possibility of further improvement in performance and usability of pan-specific methods, this article extensively reviews existing pan-specific methods and their web servers. We first present a general framework of pan-specific methods. Then, the strategies and performance as well as utilities of web servers are compared. Finally, we discuss the future direction to improve pan-specific methods for MHC-peptide binding prediction.
منابع مشابه
NetMHCIIpan-2.0 - Improved pan-specific HLA-DR predictions using a novel concurrent alignment and weight optimization training procedure
BACKGROUND Binding of peptides to Major Histocompatibility class II (MHC-II) molecules play a central role in governing responses of the adaptive immune system. MHC-II molecules sample peptides from the extracellular space allowing the immune system to detect the presence of foreign microbes from this compartment. Predicting which peptides bind to an MHC-II molecule is therefore of pivotal impo...
متن کاملThe MHC motif viewer: a visualization tool for MHC binding motifs.
In vertebrates, the onset of cellular immune reactions is controlled by presentation of peptides in complex with major histocompatibility complex (MHC) molecules to T cell receptors. In humans, MHCs are called human leukocyte antigens (HLAs). Different MHC molecules present different subsets of peptides, and knowledge of their binding specificities is important for understanding differences in ...
متن کاملPan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods
MOTIVATION MHC:peptide binding plays a central role in activating the immune surveillance. Computational approaches to determine T-cell epitopes restricted to any given major histocompatibility complex (MHC) molecule are of special practical value in the development of for instance vaccines with broad population coverage against emerging pathogens. Methods have recently been published that are ...
متن کاملA Community Resource Benchmarking Predictions of Peptide Binding to MHC-I Molecules
Recognition of peptides bound to major histocompatibility complex (MHC) class I molecules by T lymphocytes is an essential part of immune surveillance. Each MHC allele has a characteristic peptide binding preference, which can be captured in prediction algorithms, allowing for the rapid scan of entire pathogen proteomes for peptide likely to bind MHC. Here we make public a large set of 48,828 q...
متن کاملA critical cross-validation of high throughput structural binding prediction methods for pMHC
T-cells recognize antigens via their T-cell receptors. The major histocompatibility complex (MHC) binds antigens in a specific way, transports them to the surface and presents the peptides to the TCR. Many in silico approaches have been developed to predict the binding characteristics of potential T-cell epitopes (peptides), with most of them being based solely on the amino acid sequence. We pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Briefings in bioinformatics
دوره 13 3 شماره
صفحات -
تاریخ انتشار 2012